3.211 \(\int \frac{(a+a \sin (c+d x))^2}{(e \cos (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=127 \[ \frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}+\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 d e^4 \sqrt{\cos (c+d x)}} \]

[Out]

(-2*a^2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*e^4*Sqrt[Cos[c + d*x]]) + (2*a^4*(e*Cos[c + d*x])
^(3/2))/(5*d*e^5*(a - a*Sin[c + d*x])^2) + (2*a^4*(e*Cos[c + d*x])^(3/2))/(5*d*e^5*(a^2 - a^2*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.180943, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2670, 2681, 2683, 2640, 2639} \[ \frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}+\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 d e^4 \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])^2/(e*Cos[c + d*x])^(7/2),x]

[Out]

(-2*a^2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*e^4*Sqrt[Cos[c + d*x]]) + (2*a^4*(e*Cos[c + d*x])
^(3/2))/(5*d*e^5*(a - a*Sin[c + d*x])^2) + (2*a^4*(e*Cos[c + d*x])^(3/2))/(5*d*e^5*(a^2 - a^2*Sin[c + d*x]))

Rule 2670

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(a/g)^
(2*m), Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 -
 b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]

Rule 2681

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + p + 1)/(a*(2*m + p + 1)),
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (c+d x))^2}{(e \cos (c+d x))^{7/2}} \, dx &=\frac{a^4 \int \frac{\sqrt{e \cos (c+d x)}}{(a-a \sin (c+d x))^2} \, dx}{e^4}\\ &=\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}+\frac{a^3 \int \frac{\sqrt{e \cos (c+d x)}}{a-a \sin (c+d x)} \, dx}{5 e^4}\\ &=\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}+\frac{2 a^3 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))}-\frac{a^2 \int \sqrt{e \cos (c+d x)} \, dx}{5 e^4}\\ &=\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}+\frac{2 a^3 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))}-\frac{\left (a^2 \sqrt{e \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{5 e^4 \sqrt{\cos (c+d x)}}\\ &=-\frac{2 a^2 \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d e^4 \sqrt{\cos (c+d x)}}+\frac{2 a^4 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))^2}+\frac{2 a^3 (e \cos (c+d x))^{3/2}}{5 d e^5 (a-a \sin (c+d x))}\\ \end{align*}

Mathematica [C]  time = 0.0769828, size = 66, normalized size = 0.52 \[ \frac{2\ 2^{3/4} a^2 (\sin (c+d x)+1)^{5/4} \, _2F_1\left (-\frac{5}{4},\frac{1}{4};-\frac{1}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{5 d e (e \cos (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])^2/(e*Cos[c + d*x])^(7/2),x]

[Out]

(2*2^(3/4)*a^2*Hypergeometric2F1[-5/4, 1/4, -1/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^(5/4))/(5*d*e*(e*Co
s[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [B]  time = 1.003, size = 305, normalized size = 2.4 \begin{align*} -{\frac{2\,{a}^{2}}{5\,d{e}^{3}} \left ( 4\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) -4\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -6\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) -2\,\sin \left ( 1/2\,dx+c/2 \right ) \right ) \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(7/2),x)

[Out]

-2/5/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/
e^3*(4*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin
(1/2*d*x+1/2*c)^4-8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-4*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/
2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-6*sin
(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c))*a^2/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}}{\left (e \cos \left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^2/(e*cos(d*x + c))^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a^{2} \cos \left (d x + c\right )^{2} - 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \sqrt{e \cos \left (d x + c\right )}}{e^{4} \cos \left (d x + c\right )^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral(-(a^2*cos(d*x + c)^2 - 2*a^2*sin(d*x + c) - 2*a^2)*sqrt(e*cos(d*x + c))/(e^4*cos(d*x + c)^4), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**2/(e*cos(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}}{\left (e \cos \left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)^2/(e*cos(d*x + c))^(7/2), x)